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» Why my Hard Disk crashes?

» Magnetic multilayer research at UT
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Fundamentals

A magnetic multilayer is any structure that includes two or more
thin-films in which at least one is magnetic.
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Magnetic multilayers exhibit interesting electrical and magnetic
properties; these properties can be controlled giving rise to novel
and useful devices.

Main controllable parameters:
I. Direction of magnetization
Il. Type of interacting materials
1. Thickness of interacting material
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The Magical Electron

Combines all these properties

Charge q Spin (Bohr magneton B)
Electric Potential Magnetic Potential
Electrie Magnetic

Wwave

Wave Equation
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Applications

» Glant Magneto-resistance (GMR)
» Tunnel Magneto-resistance (TMR)
» Spin-valve Transistor

»MRAM
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Applications

» Glant Magneto-resistance (GMR)
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Applications
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» Glant Magneto-resistance (GMR)
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» Tunnel Magneto-resistance (TMR)
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Applications

Semiconductor

» Glant Magneto-resistance (GMR)

» Tunnel Magneto-resistance (TMR) /¢
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» Spin-valve Transistor

»MRAM
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Applications

» Glant Magneto-resistance (GMR)

» Tunnel Magneto-resistance (TMR)

Isolation

» Spin-valve Transistor “Tcmsistor
> M RAM Easy Axis Field
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Applications \

» Glant Magneto-resistance (GMR)
» Tunnel Magneto-resistance (TMR)
- MRAM > SPINTRONICS

» Spin-valve Transistor

Main challenge Is maintaining polarized spin current!
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Magnetic Multilayers @ Turabo

Students:

» Raymond Borges
» Kevin Colon (Graduated and working)

» Armando Velazquez
Collaborators:

» UPR

> FIU

» University of California, Riverside
Capability:

» Four target DC/RF magnetron sputtering system
» Lakeshore Guassmeter
» Two Tesla electromagnet with bipolar power supply

»Lock-in amplifier
T
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Magnetic Multilayers @ Turabo

Focus:

— EEE S o e
— oy

pa Bevelop 3D magnetic media for  ©
( > Magnetic Storage
A > Vertically integrated devices -7
» Use Gd within magnetic multilayers
» Radiation detection

So why does my hard disk
crash?
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Traditionally, Scaling Laws were followed to advance data storage
technologies

Magnetizing

Coil MR Reader

Inductive
“Ring” Writer

\

e

Write field Recording Media

1 Ghit/in2 = bit size: 400 x 1600 nm?
100 Ghit/in2 2 40 x 160 nm?
1 Tbit/in2 > 13 X 52 nm?2

Yazan Hijazi — Massie Chair of Excellence Program @ UT

Page 13



Scaling = Smaller Transducers and Media

1 Thit/in2 information density ~ Human Hair 75,000nm
requires 13 X 52 Nnm< Bit Sizes X

400 nm

Head Smoke Particle

@ Fingerprint
Q] gerp
L T

Media 10-100nm ~ DIsk Substrate

Flying Height 5 nm #
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Superparamagnetic Limit

Magnetic
grains

Bit transition

SNR ~log(N), N - number of grains per bit
While scaling, need to preserve number of grains per bit to preserve SNR
Grain size is reduced for higher areal densities: 1

a ~
\JAreal Density
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Media Stability
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Media Stability

High areal density means

small volume \

<

o
©
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Normalized Barrier E_ /&K T

Thermally stable media:
KuV
KT

>40-60
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What can be done?

Higher anisotropy media
HAMR

PerpendicularR\ecording / Patterned Media
K,V
" — > 40-60

KT
/ \ Cooling

Change Ks Impractical
Good Luck!!

Increase volume of grain
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Perpendicular Media = Narrow Transitions

Magnetizing
Coil

MR Reader

Inductive /
“Ring” Writer Perpendicular
e P
Inductive MR Reader
“SPH” Writer

g

Magnetizing
Coil X

/7

Write field Recording Media

Longitudinal write

field

Recording
layer

SUL

Department of Engineering
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3-D vs. Multilevel Magnetic Recording

Two potential implementations:

1. Multi-level Recording: not optimally utilized 3-D space

Note: Effective areal density increase is Log,L (where L is the number of

signal levels)

N layers
contributing

together to <

one level

( Pd interlayer

—

Co/Pd

/perpendicular

L media

3-D Recording: each magnetic layer is separately addressed

Note: Effective areal density increase is N (where N is the number of

recording layers)

n-th layer
addressing

==
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Amos, R. Chomko, D.
Litvinov, Journal of Appied
Physics, 100, 63907 (2006).
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Multi-level/3D Magnetic Media

Note: The inter-layer separation should be sufficient to break
the quantum-mechanical “exchange” coupling

Micromagnetic Simulation lllustrating Two Cases of Interlayer Separation:

a)<1nm and b) >2nm Co/Pd media
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Recording Field Profile
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MFM Images of Two Types of Media

Three-layer Co/Pt multilayer with
a net thickness of 30 nm

Section lines

One-layer Co/Pt multilayer with a
thickness of 40 nm

MFM phase change (/Maximum signal) yem phase change (/Maximum signal)
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Multi-level Recording on a Continuous Medium

Recording Step 1: _ Recording Step 2: Magnetized
. Magnetized . R
“up” state up” state
No defined B “down” state
D Magnetization No defined

Magnetization

I_Iz: Hcl
N \\ // <R
S
Recording Step 3: Major Disadvantages:

] Magnetized
“up” state

u *Every time a track is recorded into the
“down” state

_ bottom layer, there are side regions in the
|:| No deflped_ i N i :
Magnetization ~ tOP layer in which the earlier recorded
Information is lost because of the
overlapping side region

Overlapping Side Region
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Patterned Soft Underlayer SUL
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Y. Hijazi et. al. IEEE Transactions on Magnetics, vol. 42
(10), 2375-7, (2006).
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Field Pattern

g/

Field Pattern

Advantages:
1. Increases SNR
2. Localized field

3. Improved field
gradient
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3D Media Requirements

» Perpendicular magnetic anisotropy
» Patterned media = improved SNR & areal density

» Magnetically insulated multilayers _
Co/Pd media

T Pd
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AFM/MFM data of Ta/(Co/Pd)1s5

Improved magnetic
Topography  Magnetic image structure

Ta thickness10nm Ta thickness 40nm

Measurements done at Florida International University (FIU)
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Single Layer (Co/Pd)1s400nm Island Size

Multi-domain

0 4.00 pm O 4.00 pm

a Height Data type Phase
range 150.0 mnm Z range 6.000 ©°




Single Layer (Co/Pd)1s110nm Island Size

Single-domain

|

0 1.45 pm O 1.45 um
Data type Height Data twpe Phase
Z range 100.00 nm Z range 10.000 °

Measurements done at Florida International University (FIU) by Nissim Amos
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Single Layer (Co/Pd)1s110nm Island Size

Single-domain

0 3.00 pm 0 3.00 pm
Data type Height Data type Phase
Z range 150.0 nm Z range 7.000 ©




Summary

»Magnetic multilayers are fundamental in novel applications
utilizing the spin degree of freedom of the electron i.e. Spintronics.

»Patterned magnetic multilayers offer unique advantages and will
play a key role in future magnetic data storage systems.

»As Moore’s law is exhausted it is time to stack things vertically to
Increase density and functionality - 3D magnetic media.

» Universidad del Turabo has established in-house capability of
producing structured magnetic multilayers for a wide variety of
applications.
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Thanks!
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